2,668 research outputs found

    Simultaneous real-time visible and infrared video with single-pixel detectors

    Get PDF
    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics

    Adaptive foveated single-pixel imaging with dynamic super-sampling

    Get PDF
    As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requires at least the same number of correlation measurements as there are pixels in the reconstructed image. Therefore single-pixel imaging systems typically exhibit low frame-rates. To mitigate this, a range of compressive sensing techniques have been developed which rely on a priori knowledge of the scene to reconstruct images from an under-sampled set of measurements. In this work we take a different approach and adopt a strategy inspired by the foveated vision systems found in the animal kingdom - a framework that exploits the spatio-temporal redundancy present in many dynamic scenes. In our single-pixel imaging system a high-resolution foveal region follows motion within the scene, but unlike a simple zoom, every frame delivers new spatial information from across the entire field-of-view. Using this approach we demonstrate a four-fold reduction in the time taken to record the detail of rapidly evolving features, whilst simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This tiered super-sampling technique enables the reconstruction of video streams in which both the resolution and the effective exposure-time spatially vary and adapt dynamically in response to the evolution of the scene. The methods described here can complement existing compressive sensing approaches and may be applied to enhance a variety of computational imagers that rely on sequential correlation measurements.Comment: 13 pages, 5 figure

    Dimension Theory of Graphs and Networks

    Get PDF
    Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck-scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of continuum physics and mathematics. A core concept is the notion of dimension. In the following we develop such a notion for irregular structures like (large) graphs and networks and derive a number of its properties. Among other things we show its stability under a wide class of perturbations which is important if one has 'dimensional phase transitions' in mind. Furthermore we systematically construct graphs with almost arbitrary 'fractal dimension' which may be of some use in the context of 'dimensional renormalization' or statistical mechanics on irregular sets.Comment: 20 pages, 7 figures, LaTex2e, uses amsmath, amsfonts, amssymb, latexsym, epsfi

    Chapter 9 THE NATURE AND ECOLOGICAL SIGNIFICANCE OF EPIFAUNAL COMMUNITIES WITHIN MARINE ECOSYSTEMS

    Get PDF
    oceanography, climate change, reefs, marine science, marine conservation, marine researc

    Challenges for Restoration of Coastal Marine Ecosystems in the Anthropocene

    Get PDF
    Coastal marine ecosystems provide critical goods and services to humanity but many are experiencing rapid degradation. The need for effective restoration tools capable of promoting large-scale recovery of coastal ecosystems in the face of intensifying climatic stress has never been greater. We identify four major challenges for more effective implementation of coastal marine ecosystem restoration (MER): (1) development of effective, scalable restoration methods, (2) incorporation of innovative tools that promote climate adaptation, (3) integration of social and ecological restoration priorities, and (4) promotion of the perception and use of coastal MER as a scientifically credible management approach. Tackling these challenges should improve restoration success rates, heighten their recognition, and accelerate investment in and promotion of coastal MER. To reverse the accelerating decline of marine ecosystems, we discuss potential directions for meeting these challenges by applying coastal MER tools that are science-based and actionable. For coastal restoration to have a global impact, it must incorporate social science, technological and conceptual advances, and plan for future climate scenarios

    A fast 3D reconstruction system with a low-cost camera accessory

    Get PDF
    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object

    Quantum Position Measurement of a Shadow: Beating the Classical Limit

    Get PDF
    The precision with which the position of a shadow can be measured is classically limited by shot-noise. We achieve sub-shot-noise position sensitivity by jointly detecting correlated photons with a simple split-detector scheme

    Single-pixel three-dimensional imaging with time-based depth resolution

    Get PDF
    Time-of-flight three-dimensional imaging is an important tool for applications such as object recognition and remote sensing. Conventional time-of-flight three-dimensional imaging systems frequently use a raster scanned laser to measure the range of each pixel in the scene sequentially. Here we show a modified time-of-flight three-dimensional imaging system, which can use compressed sensing techniques to reduce acquisition times, whilst distributing the optical illumination over the full field of view. Our system is based on a single-pixel camera using short-pulsed structured illumination and a high-speed photodiode, and is capable of reconstructing 128 × 128-pixel resolution three-dimensional scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, by using a compressive sampling strategy, we demonstrate continuous real-time three-dimensional video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost three-dimensional imaging devices for precision ranging at wavelengths beyond the visible spectrum

    Chapter 5 Impacts and Environmental Risks of Oil Spills on Marine Invertebrates, Algae and Seagrass

    Get PDF
    Marine invertebrates and macrophytes are sensitive to the toxic effects of oil. Depending on the intensity, duration and circumstances of the exposure, they can suffer high levels of initial mortality together with prolonged sublethal effects that can act at individual, population and community levels. Under some circumstances, recovery from these impacts can take years to decades. However, effects are variable because some taxa are less sensitive than others, and many factors can mitigate the degree of exposure, meaning that impacts are moderate in many cases, and recovery occurs within a few years. Exposure is affected by a myriad of factors including: type and amount of oil, extent of weathering, persistence of exposure, application of dispersants or other clean-up measures, habitat type, temperature and depth, species present and their stage of development or maturity, and processes of recolonisation, particularly recruitment. Almost every oil spill is unique in terms of its impact because of differing levels of exposure and the type of habitats, communities and species assemblages in the receiving environment. Between 1970 and February 2017, there were 51 significant oil spills in Australia. Five occurred offshore with negligible likely or expected impacts. Of the others, only 24 of the spills were studied in detail, while 19 had only cursory or no assessment despite the potential for oil spills to impact the marine environment. The majority were limited to temperate waters, although 10 of the 14 spills since 2000 were in tropical coastal or offshore areas, seven were in north Queensland in areas close to the Great Barrier Reef. All four spills that have occurred from offshore petroleum industry infrastructure have occurred since 2009. In Australia, as elsewhere, a prespill need exists to assess the risk of a spill, establish environmental baselines, determine the likely exposure of the receiving environment, and test the toxicity of the oil against key animal and plant species in the area of potential impact. Subsequent to any spill, the baseline provides a reference for targeted impact monitoring
    • …
    corecore